26th World Gas Conference

1 – 5 June 2015, Paris, France

Thematic Session (WOC 3-3)

Assessment of ERW and EFW line pipe defects by EMAT and CMFL Inline Inspection

Martin Runde Rosen

Motivation and Scope

Top: Leis, Nestleroth; Characterizing Failure in ERW Line Pipe; Final Interim Report – Task 2.6 Bottom: Kiefner: History of line pipe manufacturing in North America, ASME, CRTD-Vol. 43

Introduction of EMAT and CMFL

Introduction of EMAT and CMFL

- The magnetic field is oriented in circumferential direction
- Primarily axially oriented volumetric anomalies are targeted such as corrosion.

 Axially oriented planar anomalies can be successfully detected when they exceed a minimum opening.

- Determine detection capabilities of machined EDM notches at centerline of the ERW seam-weld
- 22" test pipe previously removed from targeted pipeline

All lengths are given in mm

6

• WT 0.281 inch (7.2mm)

- After joint review of the pull-test data ILI tool runs have been performed and data analyzed
- After initial validation of the ILI capabilities additional joints have been selected for excavation
- Following a developed dig prioritization process to further assess the ILI capabilities 11 spools have been cut-out and verified to date

ROSEN empowered by technology

- Spools have been sandblasted and investigated using b/w MPI for the entire pipe surface
- PAUT depth profiles have been recoded for the entire seam-welds (10mm grid)
- Anomalies have been verified internally and externally

CMFL + EMAT ILI					PAUT NDE			
Joint	Туре	Depth (%)	Depth (mm)	Length (mm)	Туре	Depth (%)	Depth (mm)	Length (mm)
#1	LSWA	53	3.8	70	LOF	57	4.1	15
#2	LSWA	54	3.9	62	LOF	53	3.8	40
#3	LSWA	44	3.2	1512	Hook Crack	40	2.9	1710
1.00 1.0	LSWA	38	2.7	108	LOF	38	2.7	62
#4	LSWA	50	3.6	12828	Hook Crack	54	3.9	12060*

LSWA: Longseam Weld Anomaly

* entire cut-out length

- Combined CMFL and EMAT show good correlation to PAUT profiles
- Linear anomalies exceeding 1mm depth have been detected and identified
- Max. PAUT depth sizing results confirm reported ILI depths
- Results support the current understanding of a min. effective crosssection being required in order to allow for a POD/POI at high certainty

Thank you for your attention

